http://cs.brown.edu/courses/archive/2006-2007/cs195-5/calendar.html

IntroML.vol3.egg

 

 

Syllabus, lecture slides, homework assignments and solutions, etc.

Note: All handouts and lecture slides are in PDF format. Any scheduling information posted for future dates should be treated as tentative.

Abbreviation: DHS - Duda et al.; PRML - Bishop's new book; HTF - Hastie et al.; NNPR - Bishop's older book; MK - MacKay.

  • Wed 9/6/06
    • General introduction: goals of machine learning, examples, administrivia.
    • Lecture 1

     

     

  • Fri 9/8/06 Note: change of location to CIT 368

     

  • Mon 9/11/06 Note: change of location to CIT 368

    • Optimal regression function
    • statistical regression models, likelihood and log-likelihood
    • Maximum likelihood estimation
    • Lecture 3
    • Notes (derivations etc.)
    • Recommended reading: DHS A.2 (appendix), HTF 3.1-3.3, PRML 3.1.

     

  • Wed 9/13/06

     

  • Fri 9/15/06 In Lubrano, our new home

    • Introduction to classfication
    • A more detailed look at multivariate Gaussians
    • Linear Discriminant Analysis
    • Lecture 5
    • Another useful short summary by Sam Roweis, on Gaussian identities.
    • Recommended reading: NNPR 3.6; DHS A.4, A.5; HTF 4.1-4.3; PRML 2.3, 4.1, Appendices B,C.

     

  • Mon 9/18/06

     

  • Wed 9/20/06

    • Decision theory: Bayes rule, optimal classification.
    • Generative models for classification
    • Discriminant functions
    • Lecture 7
    • Recommended reading: PRML 1.5.1, HTF 2.4, DHS 2.1-2.7.

     

  • Fri 9/22/06

    • Estimation theory
    • Bias-variance tradeoff
    • Lecture 8

     

  • Mon 9/25/06

    • Bias-variance tradeoff and model complexity
    • Naive Bayes classifier
    • Applications in document classification
    • Bayesian estimation, MAP
    • Lecture 9
    • Recommended reading: PRML 2.2.2, 3.2; HTF 7.2-7.3; DHS 9.3; NNPR 9.1.

     

  • Wed 9/27/06

     

  • Fri 9/29/06

    • Logistic regression
    • Lecture 11
    • Recommended reading: NNPR 3.1.3, PRML 4.3.2-4.3.4.

     

  • Mon 10/2/06

    • Logistic regression: gradient ascent algorithms.
    • Computational issues, convergence.
    • Overfitting and regularization.
    • Lecture 12
    • Recommended reading: TBD.

     

  • Wed 10/4/06

     

  • Fri 10/6/06

    • Regularized regression: ridge regression and lasso.
    • Survey of what we have learned so far.
    • Large margin discriminative classifiers.
    • Lecture 14
    • Recommended reading: PRML 3.1.4, NNPR 9.2, HTF 3.4.

     

  • Mon 10/9/06

    • No class - Columbus Day

     

  • Wed 10/11/06

    • Support Vector Machines.
    • Problem Set 2 due.
    • Lecture 15
    • Recommended reading: PRML 7.1; HTF 12.2-12.3; DHS 5.11.
    • C. Burges, SVM tutorial.

     

  • Fri 10/13/06

    • Guest lecture: optimization.

     

  • Mon 10/16/06

     

  • Wed 10/18/06

    • Guest lecture: unsupervised and reinforcement learning in robotics.

     

  • Fri 10/20/06

    • Support Vector Machines: non-separable case, the kernel trick.
    • Lecture 16
    • Recommended reading: PRML 7.1; HTF 12.2-12.3; DHS 5.11.

     

  • Mon 10/23/06

    • Non-parametric methods; nearest-neighbor methods.
    • Lecture 17

     

  • Wed 10/25/06

     

  • Fri 10/27/06 CIT 367

     

  • Mon 10/30/06

     

  • Wed 11/1/06

    • The EM algorithm for Gaussian mixtures.
    • Recommended reading: PRML Chapter 9; HTF 8.5; DHS 3.9; NNPR 2.6.
    • Lecture 20

     

  • Fri 11/3/06

    • General view of EM; model selection.
    • Recommended reading: PRML Chapter 9; HTF 8.5; DHS 3.9; NNPR 2.6.
    • Lecture 21

     

  • Mon 11/6/06

     

  • Wed 11/8/06

    • Unsupervised learning, clustering, K-means.
    • Recommended reading: PRML 9.1, HTF 14.3
    • Lecture 23

     

  • Fri 11/10/06

  • Mon 11/13/06

     

  • Wed 11/15/06

    • Dimensionality reduction; Principal Component Analysis
    • Recommended reading: HTF 14.5, NNPR 8.6, PRML 12.1
    • Lecture 26

     

  • Fri 11/17/06

     

  • Mon 11/20/06

     

  • Wed 11/22/06

    • AdaBoost
    • Recommended reading: PRML 14.3, HTF 10.1-10.6
    • Lecture 29
    • Problem Set 5 due
    • Project proposals due (200-level)

     

  • Fri 11/24/06

    • No class - Thanksgiving recess

     

  • Mon 11/27/06

    • Mixtures of experts.
    • Markov Models.
    • Recommended reading: PRML 14.5, 13, HTF 9.5
    • Recommended reading: Rabiner's tutorial on HMMs for speech recognition.
    • Recommended reading: Shannon's paper on prediction and entropy of English, 1951.
    • Lecture 30

     

  • Wed 11/29/06

    • Hidden Markov models; forward-backward algorithm.
    • Recommended reading: PRML 13.1-13.2, DHS 3.10
    • Lecture 31

     

  • Fri 12/1/06

  • Mon 12/4/06

    • Hidden Markov models: decoding (Viterbi).
    • Lecture 33
    • Graphical models.

     

  • Wed 12/6/06

  • Fri 12/8/06

    • Advanced topics (beyond cs195-5).
    • Lecture 35
    • Reading Period begins

     

  • Mon 12/11/06

     

  • Wed 12/13/06

     

  • Fri 12/15/06

    • No class.

     

  • Mon 12/18/06

    • Final at 9:00am, Wilson 101
Posted by uniqueone
,