https://handong1587.github.io/deep_learning/2015/10/09/dl-resources.html
ImageNet
AlexNet
ImageNet Classification with Deep Convolutional Neural Networks
- nips-page: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
- paper: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- slides: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
- code: https://code.google.com/p/cuda-convnet/
- github: https://github.com/dnouri/cuda-convnet
- code: https://code.google.com/p/cuda-convnet2/
Network In Network
Network In Network
- arxiv: http://arxiv.org/abs/1312.4400
- gitxiv: http://gitxiv.com/posts/PA98qGuMhsijsJzgX/network-in-network-nin
Batch-normalized Maxout Network in Network
GoogLeNet
Going Deeper with Convolutions
- arxiv: http://arxiv.org/abs/1409.4842
- github: https://github.com/google/inception
- github: https://github.com/soumith/inception.torch
Building a deeper understanding of images
VGGNet
Very Deep Convolutional Networks for Large-Scale Image Recognition
- homepage: http://www.robots.ox.ac.uk/~vgg/research/very_deep/
- arxiv: http://arxiv.org/abs/1409.1556
- slides: http://llcao.net/cu-deeplearning15/presentation/cc3580_Simonyan.pptx
- slides: http://www.robots.ox.ac.uk/~karen/pdf/ILSVRC_2014.pdf
- slides: http://deeplearning.cs.cmu.edu/slides.2015/25.simonyan.pdf
Tensorflow VGG16 and VGG19
Inception-V2 / Inception-V3
Inception-V3 = Inception-V2 + BN-auxiliary (fully connected layer of the auxiliary classifier is also batch-normalized, not just the convolutions)
Rethinking the Inception Architecture for Computer Vision
- intro: “21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network; 3.5% top-5 error and 17.3% top-1 error With an ensemble of 4 models and multi-crop evaluation.”
- arxiv: http://arxiv.org/abs/1512.00567
- github(Torch): https://github.com/Moodstocks/inception-v3.torch
- github(TensorFlow): https://github.com/tensorflow/models/tree/master/inception#how-to-train-from-scratch-in-a-distributed-setting
Notes on the TensorFlow Implementation of Inception v3
Training an InceptionV3-based image classifier with your own dataset
ResNet
Deep Residual Learning for Image Recognition
- arxiv: http://arxiv.org/abs/1512.03385
- slides: http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
- gitxiv: http://gitxiv.com/posts/LgPRdTY3cwPBiMKbm/deep-residual-learning-for-image-recognition
- github: https://github.com/KaimingHe/deep-residual-networks
- github: https://github.com/alrojo/lasagne_residual_network
- github: https://github.com/shuokay/resnet
- github: https://github.com/gcr/torch-residual-networks
- github: https://github.com/apark263/cfmz
- github: https://github.com/NervanaSystems/neon/blob/master/examples/cifar10_msra.py
- github: https://github.com/facebook/fb.resnet.torch
- github: https://github.com/yasunorikudo/chainer-ResNet
- github: https://github.com/raghakot/keras-resnet
- github: https://github.com/ry/tensorflow-resnet
Third-party re-implementations
https://github.com/KaimingHe/deep-residual-networks#third-party-re-implementations
Training and investigating Residual Nets
http://torch.ch/blog/2016/02/04/resnets.html
Highway Networks and Deep Residual Networks
Interpretating Deep Residual Learning Blocks as Locally Recurrent Connections
Resnet in Resnet: Generalizing Residual Architectures
- paper: http://beta.openreview.net/forum?id=lx9l4r36gU2OVPy8Cv9g
- arxiv: http://arxiv.org/abs/1603.08029
ResNet-v2
Identity 89Mappings in Deep Residual Networks
- intro: ECCV 2016. ResNet-v2
- arxiv: http://arxiv.org/abs/1603.05027
- github: https://github.com/KaimingHe/resnet-1k-layers
- github: https://github.com/bazilas/matconvnet-ResNet
- github: https://github.com/FlorianMuellerklein/Identity-Mapping-ResNet-Lasagne
- github: https://github.com/tornadomeet/ResNet
Residual Networks are Exponential Ensembles of Relatively Shallow Networks
Wide Residual Networks
- intro: BMVC 2016
- arxiv: http://arxiv.org/abs/1605.07146
- github: https://github.com/szagoruyko/wide-residual-networks
- github: https://github.com/asmith26/wide_resnets_keras
Deep Residual Networks for Image Classification with Python + NumPy
Residual Networks of Residual Networks: Multilevel Residual Networks
Inception-V4
Inception-V4, Inception-Resnet And The Impact Of Residual Connections On Learning
- intro: Workshop track - ICLR 2016
- intro: “achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge”
- arxiv: http://arxiv.org/abs/1602.07261
- github: https://github.com/lim0606/torch-inception-resnet-v2
Inception-ResNet-v2
Striving for Simplicity: The All Convolutional Net
Systematic evaluation of CNN advances on the ImageNet
Deep Learning And Bayesian
Scalable Bayesian Optimization Using Deep Neural Networks
- intro: ICML 2015
- paper: http://jmlr.org/proceedings/papers/v37/snoek15.html
- arxiv: http://arxiv.org/abs/1502.05700
- github: https://github.com/bshahr/torch-dngo
Bayesian Dark Knowledge
Memory-based Bayesian Reasoning with Deep Learning
- intro: Google DeepMind
- slides: http://blog.shakirm.com/wp-content/uploads/2015/11/CSML_BayesDeep.pdf
Towards Bayesian Deep Learning: A Survey
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
- intro: IEEE Transactions on Knowledge and Data Engineering (TKDE), 2016
- arxiv: http://arxiv.org/abs/1608.06884
Autoencoders
Auto-Encoding Variational Bayes
The Potential Energy of an Autoencoder
- intro: PAMI 2014
- paper: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.698.4921&rep=rep1&type=pdf
Importance Weighted Autoencoders
- paper: http://arxiv.org/abs/1509.00519
- github: https://github.com/yburda/iwae
Review of Auto-Encoders
- intro: Piotr Mirowski, Microsoft Bing London, 2014
- slides: https://piotrmirowski.files.wordpress.com/2014/03/piotrmirowski_2014_reviewautoencoders.pdf
- github: https://github.com/piotrmirowski/Tutorial_AutoEncoders/
Stacked What-Where Auto-encoders
Ladder Variational Autoencoders How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
Rank Ordered Autoencoders
- arxiv: http://arxiv.org/abs/1605.01749
- github: https://github.com/paulbertens/rank-ordered-autoencoder
Decoding Stacked Denoising Autoencoders
Keras autoencoders (convolutional/fcc)
Building Autoencoders in Keras
Review of auto-encoders
- intro: Tutorial code for Auto-Encoders, implementing Marc’Aurelio Ranzato’s Sparse Encoding Symmetric Machine and testing it on the MNIST handwritten digits data.
- paper: https://github.com/piotrmirowski/Tutorial_AutoEncoders/blob/master/PiotrMirowski_2014_ReviewAutoEncoders.pdf
- github: https://github.com/piotrmirowski/Tutorial_AutoEncoders
Autoencoders: Torch implementations of various types of autoencoders
- intro: AE / SparseAE / DeepAE / ConvAE / UpconvAE / DenoisingAE / VAE / AdvAE
- github: https://github.com/Kaixhin/Autoencoders
Tutorial on Variational Autoencoders
Variational Autoencoders Explained
- blog: http://kvfrans.com/variational-autoencoders-explained/
- github: https://github.com/kvfrans/variational-autoencoder
Introducing Variational Autoencoders (in Prose and Code)
- blog: http://blog.fastforwardlabs.com/post/148842796218/introducing-variational-autoencoders-in-prose-and
Under the Hood of the Variational Autoencoder (in Prose and Code)
- blog: http://blog.fastforwardlabs.com/post/149329060653/under-the-hood-of-the-variational-autoencoder-in
The Unreasonable Confusion of Variational Autoencoders
Semi-Supervised Learning
Semi-Supervised Learning with Graphs (Label Propagation)
- paper: http://pages.cs.wisc.edu/~jerryzhu/pub/thesis.pdf
- blog(“标签传播算法(Label Propagation)及Python实现”): http://blog.csdn.net/zouxy09/article/details/49105265
Semi-Supervised Learning with Ladder Networks
Semi-supervised Feature Transfer: The Practical Benefit of Deep Learning Today?
Unsupervised Learning
Restricted Boltzmann Machine (RBM), Sparse Coding and Auto-encoder
On Random Weights and Unsupervised Feature Learning
- intro: ICML 2011
- paper: http://www.robotics.stanford.edu/~ang/papers/icml11-RandomWeights.pdf
Unsupervised Learning of Spatiotemporally Coherent Metrics
Unsupervised Visual Representation Learning by Context Prediction
- intro: ICCV 2015
- homepage: http://graphics.cs.cmu.edu/projects/deepContext/
- arxiv: http://arxiv.org/abs/1505.05192
- github: https://github.com/cdoersch/deepcontext
Unsupervised Learning on Neural Network Outputs
- intro: “use CNN trained on the ImageNet of 1000 classes to the ImageNet of over 20000 classes”
- arxiv: http://arxiv.org/abs/1506.00990
- github: https://github.com/yaolubrain/ULNNO
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
- arxiv: http://arxiv.org/abs/1603.09246
- notes: http://www.inference.vc/notes-on-unsupervised-learning-of-visual-representations-by-solving-jigsaw-puzzles/
Clustering
Joint Unsupervised Learning of Deep Representations and Image Clusters
- intro: CVPR 2016
- arxiv: https://arxiv.org/abs/1604.03628
- github(Torch): https://github.com/jwyang/joint-unsupervised-learning
Single-Channel Multi-Speaker Separation using Deep Clustering
Deep Embedded Clustering (DEC)
Unsupervised Deep Embedding for Clustering Analysis
- intro: ICML 2016
- arxiv: https://arxiv.org/abs/1511.06335
- github: https://github.com/piiswrong/dec
Transfer Learning
How transferable are features in deep neural networks?
-intro: NIPS 2014 - arxiv: http://arxiv.org/abs/1411.1792
Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks
Simultaneous Deep Transfer Across Domains and Tasks
Net2Net: Accelerating Learning via Knowledge Transfer
- arxiv: http://arxiv.org/abs/1511.05641
- github: https://github.com/soumith/net2net.torch
- notes(by Hugo Larochelle): https://www.evernote.com/shard/s189/sh/46414718-9663-440e-bbb7-65126b247b42/19688c438709251d8275d843b8158b03
Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping
A theoretical framework for deep transfer learning
- key words: transfer learning, PAC learning, PAC-Bayesian, deep learning
- homepage: http://imaiai.oxfordjournals.org/content/early/2016/04/28/imaiai.iaw008
- paper: http://imaiai.oxfordjournals.org/content/early/2016/04/28/imaiai.iaw008.full.pdf
Transfer learning using neon
Hyperparameter Transfer Learning through Surrogate Alignment for Efficient Deep Neural Network Training
What makes ImageNet good for transfer learning?
- project page: http://minyounghuh.com/papers/analysis/
- arxiv: http://arxiv.org/abs/1608.08614
Multi-label Learning
CNN: Single-label to Multi-label
Deep Learning for Multi-label Classification
- arxiv: http://arxiv.org/abs/1502.05988
- github: http://meka.sourceforge.net
Predicting Unseen Labels using Label Hierarchies in Large-Scale Multi-label Learning(ECML2015)
- paper: https://www.kdsl.tu-darmstadt.de/fileadmin/user_upload/Group_KDSL/PUnL_ECML2015_camera_ready.pdf
Learning with a Wasserstein Loss
- project page: http://cbcl.mit.edu/wasserstein/
- arxiv: http://arxiv.org/abs/1506.05439
- code: http://cbcl.mit.edu/wasserstein/yfcc100m_labels.tar.gz
- MIT news: http://news.mit.edu/2015/more-flexible-machine-learning-1001
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1602.02068
- github: https://github.com/gokceneraslan/SparseMax.torch
CNN-RNN: A Unified Framework for Multi-label Image Classification
Improving Multi-label Learning with Missing Labels by Structured Semantic Correlations
Multi-task Learning
Multitask Learning / Domain Adaptation
multi-task learning
- discussion: https://github.com/memect/hao/issues/93
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
- intro: training a convolutional network to simultaneously classify, locate and detect objects in images can boost the classification accuracy and the detection and localization accuracy of all tasks
- arxiv: http://arxiv.org/abs/1312.6229
- github: https://github.com/sermanet/OverFeat
- code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
Learning and Transferring Multi-task Deep Representation for Face Alignment
Multi-task learning of facial landmarks and expression
Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network
Deep Joint Task Learning for Generic Object Extraction
- intro: NIPS 2014
- homepage: http://vision.sysu.edu.cn/projects/deep-joint-task-learning/
- paper: http://ss.sysu.edu.cn/~ll/files/NIPS2014_JointTask.pdf
- github: https://github.com/xiaolonw/nips14_loc_seg_testonly
- dataset: http://objectextraction.github.io/
Multi-Task Deep Visual-Semantic Embedding for Video Thumbnail Selection
- intro: CVPR 2015
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Multi-Task_Deep_Visual-Semantic_2015_CVPR_paper.pdf
Learning deep representation of multityped objects and tasks
Cross-stitch Networks for Multi-task Learning
Multi-Task Learning in Tensorflow (Part 1)
一箭N雕:多任务深度学习实战
- intro: 薛云峰 深度学习大讲堂
- blog: http://mp.weixin.qq.com/s?__biz=MzI1NTE4NTUwOQ==&mid=2650325281&idx=1&sn=97779ff0da06190d6a71d33f23e9dede#rd
Multi-modal Learning
Multimodal Deep Learning
Multimodal Convolutional Neural Networks for Matching Image and Sentence
- homepage: http://mcnn.noahlab.com.hk/project.html
- paper: http://mcnn.noahlab.com.hk/ICCV2015.pdf
- arxiv: http://arxiv.org/abs/1504.06063
A C++ library for Multimodal Deep Learning
Multimodal Learning for Image Captioning and Visual Question Answering
Multi modal retrieval and generation with deep distributed models
- slides: http://www.slideshare.net/roelofp/multi-modal-retrieval-and-generation-with-deep-distributed-models
- slides: http://pan.baidu.com/s/1kUSjn4z
Learning Aligned Cross-Modal Representations from Weakly Aligned Data
- homepage: http://projects.csail.mit.edu/cmplaces/index.html
- paper: http://projects.csail.mit.edu/cmplaces/content/paper.pdf
Variational methods for Conditional Multimodal Deep Learning
Debugging Deep Learning
Some tips for debugging deep learning
Introduction to debugging neural networks
- blog: http://russellsstewart.com/notes/0.html
- reddit: https://www.reddit.com/r/MachineLearning/comments/4du7gv/introduction_to_debugging_neural_networks
How to Visualize, Monitor and Debug Neural Network Learning
Adversarial Examples of Deep Learning
Intriguing properties of neural networks
- arxiv: http://arxiv.org/abs/1312.6199
- my notes: In each layer of a deep network it is the “direction” of “space” (ensemble of feature activations) which encodes useful class information rather than individual units (feature activations).
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Explaining and Harnessing Adversarial Examples
- intro: primary cause of neural networks’ vulnerability to adversarial perturbation is their linear nature
- arxiv: http://arxiv.org/abs/1412.6572
Distributional Smoothing with Virtual Adversarial Training
- arxiv: http://arxiv.org/abs/1507.00677
- github: https://github.com/takerum/vat
Confusing Deep Convolution Networks by Relabelling
Exploring the Space of Adversarial Images
Learning with a Strong Adversary
Adversarial examples in the physical world
- author: Alexey Kurakin, Ian Goodfellow, Samy Bengio. Google Brain & OpenAI
- arxiv: http://arxiv.org/abs/1607.02533
DeepFool
DeepFool: a simple and accurate method to fool deep neural networks
- arxiv: http://arxiv.org/abs/1511.04599
- github: https://github.com/LTS4/DeepFool
Adversarial Autoencoders
- arxiv: http://arxiv.org/abs/1511.05644
- slides: https://docs.google.com/presentation/d/1Lyp91JOSzXo0Kk8gPdgyQUDuqLV_PnSzJh7i5c8ZKjs/edit?pref=2&pli=1
- notes(by Dustin Tran): http://dustintran.com/blog/adversarial-autoencoders/
- TFD manifold: http://www.comm.utoronto.ca/~makhzani/adv_ae/tfd.gif
- SVHN style manifold: http://www.comm.utoronto.ca/~makhzani/adv_ae/svhn.gif
Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization
(Deep Learning’s Deep Flaws)’s Deep Flaws (By Zachary Chase Lipton)
Deep Learning Adversarial Examples – Clarifying Misconceptions
- intro: By Ian Goodfellow, Google
- blog: http://www.kdnuggets.com/2015/07/deep-learning-adversarial-examples-misconceptions.html
Adversarial Machines: Fooling A.Is (and turn everyone into a Manga)
How to trick a neural network into thinking a panda is a vulture
Deep Learning Networks
PCANet: A Simple Deep Learning Baseline for Image Classification?
- arixv: http://arxiv.org/abs/1404.3606
- code(Matlab): http://mx.nthu.edu.tw/~tsunghan/download/PCANet_demo_pyramid.rar
- mirror: http://pan.baidu.com/s/1mg24b3a
- github(C++): https://github.com/Ldpe2G/PCANet
Deeply-supervised Nets (DSN)
- arxiv: http://arxiv.org/abs/1409.5185
- homepage: http://vcl.ucsd.edu/~sxie/2014/09/12/dsn-project/
- github: https://github.com/s9xie/DSN
- notes: http://zhangliliang.com/2014/11/02/paper-note-dsn/
Striving for Simplicity: The All Convolutional Net
Pointer Networks
- arxiv: https://arxiv.org/abs/1506.03134
- github: https://github.com/vshallc/PtrNets
- notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/pointer-networks.md
Rectified Factor Networks
- arxiv: http://arxiv.org/abs/1502.06464
- github: https://github.com/untom/librfn
FlowNet: Learning Optical Flow with Convolutional Networks
Correlational Neural Networks
Diversity Networks
A Unified Approach for Learning the Parameters of Sum-Product Networks (SPN)
- intro: “The Sum-Product Network (SPN) is a new type of machine learning model with fast exact probabilistic inference over many layers.”
- arxiv: http://arxiv.org/abs/1601.00318
- homepage: http://spn.cs.washington.edu/index.shtml
- code: http://spn.cs.washington.edu/code.shtml
Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation
- arxiv: http://arxiv.org/abs/1511.07356
- github: https://github.com/SinaHonari/RCN
Dynamic Capacity Networks
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1511.07838
- github(Tensorflow): https://github.com/beopst/dcn.tf
- review: http://www.erogol.com/1314-2/
Bitwise Neural Networks
- paper: http://paris.cs.illinois.edu/pubs/minje-icmlw2015.pdf
- demo: http://minjekim.com/demo_bnn.html
Learning Discriminative Features via Label Consistent Neural Network
A Theory of Generative ConvNet
- project page: http://www.stat.ucla.edu/~ywu/GenerativeConvNet/main.html
- arxiv: http://arxiv.org/abs/1602.03264
- code: http://www.stat.ucla.edu/~ywu/GenerativeConvNet/doc/code.zip
Value Iteration Networks
- arxiv: http://arxiv.org/abs/1602.02867
- notes(by Andrej Karpathy): https://github.com/karpathy/paper-notes/blob/master/vin.md
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
Group Equivariant Convolutional Networks (G-CNNs)
Deep Spiking Networks
Low-rank passthrough neural networks
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
- arxiv: http://arxiv.org/abs/1603.05279
- github(Torch): https://github.com/mrastegari/XNOR-Net
Deeply-Fused Nets
SNN: Stacked Neural Networks
Convolutional Neural Fabrics
Holistic SparseCNN: Forging the Trident of Accuracy, Speed, and Size
Factorized Convolutional Neural Networks
Mollifying Networks
- author: Caglar Gulcehre, Marcin Moczulski, Francesco Visin, Yoshua Bengio
- arxiv: http://arxiv.org/abs/1608.04980
Local Binary Convolutional Neural Networks
DenseNet
Densely Connected Convolutional Networks
CliqueCNN: Deep Unsupervised Exemplar Learning
Convexified Convolutional Neural Networks
Highway Networks
Highway Networks
- arxiv: http://arxiv.org/abs/1505.00387
- blog(“Highway Networks with TensorFlow”): https://medium.com/jim-fleming/highway-networks-with-tensorflow-1e6dfa667daa#.71fgztsb6
Very Deep Learning with Highway Networks
- homepage(papers+code+FAQ): http://people.idsia.ch/~rupesh/very_deep_learning/
Training Very Deep Networks (highway networks)
Spatial Transformer Networks
Spatial Transformer Networks
- intro: NIPS 2015
- arxiv: http://arxiv.org/abs/1506.02025
- gitxiv: http://gitxiv.com/posts/5WTXTLuEA4Hd8W84G/spatial-transformer-networks
- github: https://github.com/daerduoCarey/SpatialTransformerLayer
- github: https://github.com/qassemoquab/stnbhwd
- github: https://github.com/skaae/transformer_network
- github(Caffe): https://github.com/happynear/SpatialTransformerLayer
- github: https://github.com/daviddao/spatial-transformer-tensorflow
- caffe-issue: https://github.com/BVLC/caffe/issues/3114
- code: https://lasagne.readthedocs.org/en/latest/modules/layers/special.html#lasagne.layers.TransformerLayer
- ipn(Lasagne): http://nbviewer.jupyter.org/github/Lasagne/Recipes/blob/master/examples/spatial_transformer_network.ipynb
- notes: https://www.evernote.com/shard/s189/sh/ad8a38de-9e98-4e06-b09e-574bd62893ff/32f72798c095dd7672f4cb017a32d9b4
- youtube: https://www.youtube.com/watch?v=6NOQC_fl1hQ
The power of Spatial Transformer Networks
- blog: http://torch.ch/blog/2015/09/07/spatial_transformers.html
- github: https://github.com/moodstocks/gtsrb.torch
Recurrent Spatial Transformer Networks
Deep Learning with Traditional Machine Learning Methods
Cascade
Compact Convolutional Neural Network Cascade for Face Detection
Bag of Words (BoW)
Deep Learning Transcends the Bag of Words
- blog: http://www.kdnuggets.com/2015/12/deep-learning-outgrows-bag-words-recurrent-neural-networks.html
Bootstrap
Training Deep Neural Networks on Noisy Labels with Bootstrapping
Decision Tree
Neural Network and Decision Tree
Decision Forests, Convolutional Networks and the Models in-Between
- arxiv: http://arxiv.org/abs/1603.01250
- notes: http://blog.csdn.net/stdcoutzyx/article/details/50993124
SVM
Large-scale Learning with SVM and Convolutional for Generic Object Categorization
Convolutional Neural Support Vector Machines:Hybrid Visual Pattern Classifiers for Multi-robot Systems
Deep Learning using Linear Support Vector Machines
Deep Learning and Robots
Robot Learning Manipulation Action Plans by “Watching” Unconstrained Videos from the World Wide Web
- intro: AAAI 2015
- paper: http://www.umiacs.umd.edu/~yzyang/paper/YouCookMani_CameraReady.pdf
- author page: http://www.umiacs.umd.edu/~yzyang/
Robots that can adapt like animals (Nature 2014)
- arxiv: http://arxiv.org/abs/1407.3501
- code: http://pages.isir.upmc.fr/~mouret/code/ite_source_code.tar.gz
- github(for Bayesian optimization): http://github.com/jbmouret/limbo
End-to-End Training of Deep Visuomotor Policies
Comment on Open AI’s Efforts to Robot Learning
The Curious Robot: Learning Visual Representations via Physical Interactions
Deep Learning on Mobile Devices
Convolutional neural networks on the iPhone with VGGNet
- blog: http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/
- github: https://github.com/hollance/VGGNet-Metal
Deep Learning in Finance
Deep Learning in Finance
A Survey of Deep Learning Techniques Applied to Trading
Applications
Some like it hot - visual guidance for preference prediction
- arxiv: http://arxiv.org/abs/1510.07867
- demo: http://howhot.io/
Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey
Deep-Spying: Spying using Smartwatch and Deep Learning
Camera identification with deep convolutional networks
- key word: copyright infringement cases, ownership attribution
- arxiv: http://arxiv.org/abs/1603.01068
Build an AI Cat Chaser with Jetson TX1 and Caffe
An Analysis of Deep Neural Network Models for Practical Applications
8 Inspirational Applications of Deep Learning
- intro: Colorization of Black and White Images, Adding Sounds To Silent Movies, Automatic Machine Translation Object Classification in Photographs, Automatic Handwriting Generation, Character Text Generation, Image Caption Generation, Automatic Game Playing
- blog: http://machinelearningmastery.com/inspirational-applications-deep-learning/
16 Open Source Deep Learning Models Running as Microservices
-intro: Places 365 Classifier, Deep Face Recognition, Real Estate Classifier, Colorful Image Colorization, Illustration Tagger, InceptionNet, Parsey McParseface, ArtsyNetworks - blog: http://blog.algorithmia.com/2016/07/open-source-deep-learning-algorithm-roundup/
Makeup like a superstar: Deep Localized Makeup Transfer Network
- intro: IJCAI 2016
- arxiv: http://arxiv.org/abs/1604.07102
Deep Cascaded Bi-Network for Face Hallucination
- project page: http://mmlab.ie.cuhk.edu.hk/projects/CBN.html
- arxiv: http://arxiv.org/abs/1607.05046
DeepWarp: Photorealistic Image Resynthesis for Gaze Manipulation
- project page: http://yaroslav.ganin.net/static/deepwarp/
- arxiv: http://arxiv.org/abs/1607.07215
Autoencoding Blade Runner
- blog: https://medium.com/@Terrybroad/autoencoding-blade-runner-88941213abbe#.9kckqg7cq
- github: https://github.com/terrybroad/Learned-Sim-Autoencoder-For-Video-Frames
A guy trained a machine to “watch” Blade Runner. Then things got seriously sci-fi.
http://www.vox.com/2016/6/1/11787262/blade-runner-neural-network-encoding
Deep Convolution Networks for Compression Artifacts Reduction
- intro: ICCV 2015
- project page(code): http://mmlab.ie.cuhk.edu.hk/projects/ARCNN.html
- arxiv: http://arxiv.org/abs/1608.02778
Deep GDashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks
- intro: Deep Genomic Dashboard (Deep GDashboard)
- arxiv: http://arxiv.org/abs/1608.03644
Photo Filter Recommendation by Category-Aware Aesthetic Learning
- intro: Filter Aesthetic Comparison Dataset (FACD): 28,000 filtered images and 42,240 reliable image pairs with aesthetic comparison annotations
- arxiv: http://arxiv.org/abs/1608.05339
Instagram photos reveal predictive markers of depression
How an Algorithm Learned to Identify Depressed Individuals by Studying Their Instagram Photos
IM2CAD
Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks
- paper: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
- github: https://github.com/cupslab/neural_network_cracking
Defeating Image Obfuscation with Deep Learning
Detecting Music BPM using Neural Networks
- keywords: BPM (Beats Per Minutes)
- blog: https://nlml.github.io/neural-networks/detecting-bpm-neural-networks/
- github: https://github.com/nlml/bpm
Age Estimation
Deeply-Learned Feature for Age Estimation
Age and Gender Classification using Convolutional Neural Networks
- paper: http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf
- project page: http://www.openu.ac.il/home/hassner/projects/cnn_agegender/
- github: https://github.com/GilLevi/AgeGenderDeepLearning
Recurrent Face Aging
Emotion / Expression Recognition
Real-time emotion recognition for gaming using deep convolutional network features
Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns
- project page: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/
- papre: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf
- github: https://gist.github.com/GilLevi/54aee1b8b0397721aa4b
DeXpression: Deep Convolutional Neural Network for Expression Recognition
DEX: Deep EXpectation of apparent age from a single image
- intro: ICCV 2015
- paper: https://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01229.pdf
- homepage: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
How Deep Neural Networks Can Improve Emotion Recognition on Video Data
- intro: ICIP 2016
- arxiv: http://arxiv.org/abs/1602.07377
Peak-Piloted Deep Network for Facial Expression Recognition
Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution
A Recursive Framework for Expression Recognition: From Web Images to Deep Models to Game Dataset
-arxiv: http://arxiv.org/abs/1608.01647
EmotioNet
EmotioNet: EmotioNet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild
- intro: CVPR 2016
- paper: http://cbcsl.ece.ohio-state.edu/cvpr16.pdf
- database: http://cbcsl.ece.ohio-state.edu/dbform_emotionet.html
Attribution Prediction
PANDA: Pose Aligned Networks for Deep Attribute Modeling
- intro: Facebook. CVPR 2014
- arxiv: http://arxiv.org/abs/1311.5591
- github: https://github.com/facebook/pose-aligned-deep-networks
Predicting psychological attributions from face photographs with a deep neural network
Learning Human Identity from Motion Patterns
Pose Estimation
DeepPose: Human Pose Estimation via Deep Neural Networks
- intro: CVPR 2014
- arxiv: http://arxiv.org/abs/1312.4659
- slides: http://140.122.184.143/paperlinks/Slides/DeepPose_HumanPose_Estimation_via_Deep_Neural_Networks.pptx
Flowing ConvNets for Human Pose Estimation in Videos
- arxiv: http://arxiv.org/abs/1506.02897
- homepage: http://www.robots.ox.ac.uk/~vgg/software/cnn_heatmap/
- github: https://github.com/tpfister/caffe-heatmap
Structured Feature Learning for Pose Estimation
- arxiv: http://arxiv.org/abs/1603.09065
- homepage: http://www.ee.cuhk.edu.hk/~xgwang/projectpage_structured_feature_pose.html
Convolutional Pose Machines
- arxiv: http://arxiv.org/abs/1602.00134
- github: https://github.com/shihenw/convolutional-pose-machines-release
Model-based Deep Hand Pose Estimation
Stacked Hourglass Networks for Human Pose Estimation
- homepage: http://www-personal.umich.edu/~alnewell/pose/
- arxiv: http://arxiv.org/abs/1603.06937
- github: https://github.com/anewell/pose-hg-train
- demo: https://github.com/anewell/pose-hg-demo
Chained Predictions Using Convolutional Neural Networks
- intro: EECV 2016
- keywords: CNN, structured prediction, RNN, human pose estimation
- arxiv: http://arxiv.org/abs/1605.02346
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
Sentiment Prediction
From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction
- arxiv: http://arxiv.org/abs/1604.03489
- github: https://github.com/imatge-upc/sentiment-2016
- gitxiv: http://gitxiv.com/posts/ruqRgXdPTHJ77LDEb/from-pixels-to-sentiment-fine-tuning-cnns-for-visual
Predict Sentiment From Movie Reviews Using Deep Learning
Neural Sentiment Classification with User and Product Attention
- intro: EMNLP 2016
- paper: http://www.thunlp.org/~chm/publications/emnlp2016_NSCUPA.pdf
- github: https://github.com/thunlp/NSC
Place Recognition
NetVLAD: CNN architecture for weakly supervised place recognition
PlaNet - Photo Geolocation with Convolutional Neural Networks
- arxiv: http://arxiv.org/abs/1602.05314
- review(“Google Unveils Neural Network with “Superhuman” Ability to Determine the Location of Almost Any Image”): https://www.technologyreview.com/s/600889/google-unveils-neural-network-with-superhuman-ability-to-determine-the-location-of-almost/
- github(“City-Recognition: CS231n Project for Winter 2016”): https://github.com/dmakian/LittlePlaNet
- github: https://github.com/wulfebw/LittlePlaNet-Models
Camera Relocalization
PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization
- paper: http://arxiv.org/abs/1505.07427
- project page: http://mi.eng.cam.ac.uk/projects/relocalisation/#results
- github: https://github.com/alexgkendall/caffe-posenet
Modelling Uncertainty in Deep Learning for Camera Relocalization
Crowd Counting / Analysis
Large scale crowd analysis based on convolutional neural network
Cross-scene Crowd Counting via Deep Convolutional Neural Networks
- intro: CVPR 2015
- paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/zhangLWYcvpr15.pdf
Single-Image Crowd Counting via Multi-Column Convolutional Neural Network
- intro: CVPR 2016
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf
- dataset(pwd: p1rv): http://pan.baidu.com/s/1gfyNBTh
CrowdNet
CrowdNet: A Deep Convolutional Network for Dense Crowd Counting
- intro: ACM Multimedia (MM) 2016
- arxiv: http://arxiv.org/abs/1608.06197
Music / Sound Classification
Explaining Deep Convolutional Neural Networks on Music Classification
- arxiv: http://arxiv.org/abs/1607.02444
- blog: https://keunwoochoi.wordpress.com/2015/12/09/ismir-2015-lbd-auralisation-of-deep-convolutional-neural-networks-listening-to-learned-features-auralization/
- blog: https://keunwoochoi.wordpress.com/2016/03/23/what-cnns-see-when-cnns-see-spectrograms/
- github: https://github.com/keunwoochoi/Auralisation
- audio samples: https://soundcloud.com/kchoi-research
Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification
- arxiv: http://arxiv.org/abs/1608.04363
- project page: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/main.html
NSFW Detection / Classification
Nipple Detection using Convolutional Neural Network
Applying deep learning to classify pornographic images and videos
MODERATE, FILTER, OR CURATE ADULT CONTENT WITH CLARIFAI’S NSFW MODEL
WHAT CONVOLUTIONAL NEURAL NETWORKS LOOK AT WHEN THEY SEE NUDITY
- blog: http://blog.clarifai.com/what-convolutional-neural-networks-see-at-when-they-see-nudity#.VzVh_-yECZY
Image Reconstruction / Inpainting
Context Encoders: Feature Learning by Inpainting
- intro: CVPR 2016
- project page: http://www.cs.berkeley.edu/~pathak/context_encoder/
- arxiv: https://arxiv.org/abs/1604.07379
- github: https://github.com/pathak22/context-encoder
Semantic Image Inpainting with Perceptual and Contextual Losses
- keywords: Deep Convolutional Generative Adversarial Network (DCGAN)
- arxiv: http://arxiv.org/abs/1607.07539
Image Restoration
Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections
- intro: NIPS 2016
- arxiv: http://arxiv.org/abs/1603.09056
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections
Image Completion with Deep Learning in TensorFlow
Image Super-Resolution
Image Super-Resolution Using Deep Convolutional Networks
- intro: Microsoft Research
- project page: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
- arxiv: http://arxiv.org/abs/1501.00092
- training code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_train.zip
- test code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_v1.zip
Learning a Deep Convolutional Network for Image Super-Resolution
- Baidu-pan: http://pan.baidu.com/s/1c0k0wRu
Shepard Convolutional Neural Networks
Bicubic VS. Shepard CNN
- paper: https://papers.nips.cc/paper/5774-shepard-convolutional-neural-networks.pdf
- github: https://github.com/jimmy-ren/vcnn_double-bladed/tree/master/applications/Shepard_CNN
Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution
- intro: NIPS 2015
- paper: https://papers.nips.cc/paper/5778-bidirectional-recurrent-convolutional-networks-for-multi-frame-super-resolution
Deeply-Recursive Convolutional Network for Image Super-Resolution
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1511.04491
- paper: http://cv.snu.ac.kr/publication/conf/2016/DRCN_CVPR2016.pdf
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
Super-Resolution with Deep Convolutional Sufficient Statistics
Deep Depth Super-Resolution : Learning Depth Super-Resolution using Deep Convolutional Neural Network
Local- and Holistic- Structure Preserving Image Super Resolution via Deep Joint Component Learning
End-to-End Image Super-Resolution via Deep and Shallow Convolutional Networks
Accelerating the Super-Resolution Convolutional Neural Network
- intro: speed up of more than 40 times with even superior restoration quality, real-time performance on a generic CPU
- project page: http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
- arxiv: http://arxiv.org/abs/1608.00367
srez: Image super-resolution through deep learning
Image Denoising
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
- arxiv: http://arxiv.org/abs/1608.03981
- github: https://github.com/cszn/DnCNN
Medical image denoising using convolutional denoising autoencoders
Image Haze Removal
DehazeNet: An End-to-End System for Single Image Haze Removal
Blur Detection and Removal
Learning to Deblur
Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal
End-to-End Learning for Image Burst Deblurring
Image Compression
An image compression and encryption scheme based on deep learning
Full Resolution Image Compression with Recurrent Neural Networks
Depth Prediction
Deeper Depth Prediction with Fully Convolutional Residual Networks
Texture Synthesis
Texture Synthesis Using Convolutional Neural Networks
Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
- intro: IMCL 2016
- arxiv: http://arxiv.org/abs/1603.03417
- github: https://github.com/DmitryUlyanov/texture_nets
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
- arxiv: http://arxiv.org/abs/1604.04382
- github(Torch): https://github.com/chuanli11/MGANs
Generative Adversarial Text to Image Synthesis
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1605.05396
- github(Tensorflow): https://github.com/paarthneekhara/text-to-image
Image Tagging
Flexible Image Tagging with Fast0Tag
Music Tagging
Automatic tagging using deep convolutional neural networks
- arxiv: https://arxiv.org/abs/1606.00298
- github: https://github.com/keunwoochoi/music-auto_tagging-keras
Benchmarks
Deep Learning’s Accuracy
Benchmarks for popular CNN models
https://github.com/jcjohnson/cnn-benchmarks
Papers
Reweighted Wake-Sleep
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
- paper: http://arxiv.org/abs/1502.05336
- github: https://github.com/HIPS/Probabilistic-Backpropagation
Deeply-Supervised Nets
Deep learning
- intro: Nature 2015
- author: Yann LeCun, Yoshua Bengio & Geoffrey Hinton
- paper: http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
On the Expressive Power of Deep Learning: A Tensor Analysis
Understanding and Predicting Image Memorability at a Large Scale
- intro: MIT. ICCV 2015
- homepage: http://memorability.csail.mit.edu/
- paper: https://people.csail.mit.edu/khosla/papers/iccv2015_khosla.pdf
- code: http://memorability.csail.mit.edu/download.html
- reviews: http://petapixel.com/2015/12/18/how-memorable-are-times-top-10-photos-of-2015-to-a-computer/
Towards Open Set Deep Networks
Structured Prediction Energy Networks (SPEN)
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
Deep Neural Networks predict Hierarchical Spatio-temporal Cortical Dynamics of Human Visual Object Recognition
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
Understanding Deep Convolutional Networks
DeepCare: A Deep Dynamic Memory Model for Predictive Medicine
Exploiting Cyclic Symmetry in Convolutional Neural Networks
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1602.02660
- github(Winning solution for the National Data Science Bowl competition on Kaggle (plankton classification)): https://github.com/benanne/kaggle-ndsb
- ref(use Cyclic pooling): http://benanne.github.io/2015/03/17/plankton.html
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
- arxiv: http://arxiv.org/abs/1512.04065
- github: https://github.com/yahoo/crow
Understanding Visual Concepts with Continuation Learning
- project page: http://willwhitney.github.io/understanding-visual-concepts/
- arxiv: http://arxiv.org/abs/1602.06822
- github: https://github.com/willwhitney/understanding-visual-concepts
Learning Efficient Algorithms with Hierarchical Attentive Memory
- arxiv: http://arxiv.org/abs/1602.03218
- github: https://github.com/Smerity/tf-ham
DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks
Do Deep Convolutional Nets Really Need to be Deep (Or Even Convolutional)?
- arxiv: http://arxiv.org/abs/1603.05691
- review: http://www.erogol.com/paper-review-deep-convolutional-nets-really-need-deep-even-convolutional/
Harnessing Deep Neural Networks with Logic Rules
Degrees of Freedom in Deep Neural Networks
Deep Networks with Stochastic Depth
- arxiv: http://arxiv.org/abs/1603.09382
- github: https://github.com/yueatsprograms/Stochastic_Depth
- notes(“Stochastic Depth Networks will Become the New Normal”): http://deliprao.com/archives/134
- github: https://github.com/dblN/stochastic_depth_keras
- github: https://github.com/yasunorikudo/chainer-ResDrop
- review: https://medium.com/@tim_nth/review-deep-networks-with-stochastic-depth-51bd53acfe72
LIFT: Learned Invariant Feature Transform
Understanding How Image Quality Affects Deep Neural Networks
- arxiv: http://arxiv.org/abs/1604.04004
- reddit: https://www.reddit.com/r/MachineLearning/comments/4exk3u/dcnns_are_more_sensitive_to_blur_and_noise_than/
Deep Embedding for Spatial Role Labeling
- arxiv: http://arxiv.org/abs/1603.08474
- github: https://github.com/oswaldoludwig/visually-informed-embedding-of-word-VIEW-
Learning Convolutional Neural Networks for Graphs
Unreasonable Effectiveness of Learning Neural Nets: Accessible States and Robust Ensembles
Learning Deep Representation for Imbalanced Classification
- intro: CVPR 2016
- keywords: Deep Learning Large Margin Local Embedding (LMLE)
- project page: http://mmlab.ie.cuhk.edu.hk/projects/LMLE.html
- paper: http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2016_imbalanced.pdf
- code: http://mmlab.ie.cuhk.edu.hk/projects/LMLE/lmle_code.zip
FractalNet
FractalNet: Ultra-Deep Neural Networks without Residuals
- project: http://people.cs.uchicago.edu/~larsson/fractalnet/
- arxiv: http://arxiv.org/abs/1605.07648
- github: https://github.com/gustavla/fractalnet
- github: https://github.com/edgelord/FractalNet
- github(keras): https://github.com/snf/keras-fractalnet
Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images
- homepage: http://allenai.org/plato/newtonian-understanding/
- arxiv: http://arxiv.org/abs/1511.04048
- github: https://github.com/roozbehm/newtonian
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
Recent Advances in Convolutional Neural Networks
TI-POOLING: transformation-invariant pooling for feature learning in Convolutional Neural Networks
- intro: CVPR 2016
- paper: http://dlaptev.org/papers/Laptev16_CVPR.pdf
- github: https://github.com/dlaptev/TI-pooling
Why does deep and cheap learning work so well?
STDP
A biological gradient descent for prediction through a combination of STDP and homeostatic plasticity
An objective function for STDP
Towards a Biologically Plausible Backprop
Target Propagation
How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation
Difference Target Propagation
- arxiv: http://arxiv.org/abs/1412.7525
- github: https://github.com/donghyunlee/dtp
CNN with Computer Vision
End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression
A convnet for non-maximum suppression
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
Projects
Top Deep Learning Projects
deepnet: Implementation of some deep learning algorithms
DeepNeuralClassifier(Julia): Deep neural network using rectified linear units to classify hand written digits from the MNIST dataset
Clarifai Node.js Demo
- github: https://github.com/patcat/Clarifai-Node-Demo
- blog(“How to Make Your Web App Smarter with Image Recognition”): http://www.sitepoint.com/how-to-make-your-web-app-smarter-with-image-recognition/
Visual Search Server
- intro: “A simple implementation of Visual Search using features extracted from Tensor Flow inception model”
- github: https://github.com/AKSHAYUBHAT/VisualSearchServer
Deep Learning in Rust
- blog(“baby steps”): https://medium.com/@tedsta/deep-learning-in-rust-7e228107cccc#.t0pskuwkm
- blog(“a walk in the park”): https://medium.com/@tedsta/deep-learning-in-rust-a-walk-in-the-park-fed6c87165ea#.pucj1l5yx
- github: https://github.com/tedsta/deeplearn-rs
Implementation of state-of-art models in Torch
Deep Learning (Python, C, C++, Java, Scala, Go)
deepmark: THE Deep Learning Benchmarks
Siamese Net
- intro: “This package shows how to train a siamese network using Lasagne and Theano and includes network definitions for state-of-the-art networks including: DeepID, DeepID2, Chopra et. al, and Hani et. al. We also include one pre-trained model using a custom convolutional network.”
- github: https://github.com/Kadenze/siamese_net
PRE-TRAINED CONVNETS AND OBJECT LOCALISATION IN KERAS
- blog: https://blog.heuritech.com/2016/04/26/pre-trained-convnets-and-object-localisation-in-keras/
- github: https://github.com/heuritech/convnets-keras
Deep Learning algorithms with TensorFlow: Ready to use implementations of various Deep Learning algorithms using TensorFlow
- homepage: http://www.gabrieleangeletti.com/
- github: https://github.com/blackecho/Deep-Learning-TensorFlow
Fast Multi-threaded VGG 19 Feature Extractor
Live demo of neural network classifying images
http://ml4a.github.io/dev/demos/cifar_confusion.html#
mojo cnn: c++ convolutional neural network
- intro: the fast and easy header only c++ convolutional neural network package
- github: https://github.com/gnawice/mojo-cnn
DeepHeart: Neural networks for monitoring cardiac data
Deep Water: Deep Learning in H2O using Native GPU Backends
- intro: Native implementation of Deep Learning models for GPU backends (mxnet, Caffe, TensorFlow, etc.)
- github: https://github.com/h2oai/deepwater
Greentea LibDNN: Greentea LibDNN - a universal convolution implementation supporting CUDA and OpenCL
Dracula: A spookily good Part of Speech Tagger optimized for Twitter
- intro: A deep, LSTM-based part of speech tagger and sentiment analyser using character embeddings instead of words. Compatible with Theano and TensorFlow. Optimized for Twitter.
- homepage: http://dracula.sentimentron.co.uk/
- speech tagging demo: http://dracula.sentimentron.co.uk/pos-demo/
- sentiment demo: http://dracula.sentimentron.co.uk/sentiment-demo/
- github: https://github.com/Sentimentron/Dracula
Trained image classification models for Keras
- intro: Keras code and weights files for popular deep learning models.
- intro: VGG16, VGG19, ResNet50, Inception v3
- github: https://github.com/fchollet/deep-learning-models
PyCNN: Cellular Neural Networks Image Processing Python Library
regl-cnn: Digit recognition with Convolutional Neural Networks in WebGL
- intro: TensorFlow, WebGL, regl
- github: https://github.com/Erkaman/regl-cnn/
- demo: https://erkaman.github.io/regl-cnn/src/demo.html
gvnn
gvnn: Neural Network Library for Geometric Computer Vision
Readings and Questions
What you wanted to know about AI
http://fastml.com/what-you-wanted-to-know-about-ai/
Epoch vs iteration when training neural networks
- stackoverflow: http://stackoverflow.com/questions/4752626/epoch-vs-iteration-when-training-neural-networks
Questions to Ask When Applying Deep Learning
http://deeplearning4j.org/questions.html
How can I know if Deep Learning works better for a specific problem than SVM or random forest?
What is the difference between deep learning and usual machine learning?
Resources
Awesome Deep Learning
Awesome-deep-vision: A curated list of deep learning resources for computer vision
- website: http://jiwonkim.org/awesome-deep-vision/
- github: https://github.com/kjw0612/awesome-deep-vision
Applied Deep Learning Resources: A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings.
Deep Learning Libraries by Language
Deep Learning Resources
http://yanirseroussi.com/deep-learning-resources/
Deep Learning Resources
https://omtcyfz.github.io/2016/08/29/Deep-Learning-Resources.html
Turing Machine: musings on theory & code(DEEP LEARNING REVOLUTION, summer 2015, state of the art & topnotch links)
BICV Group: Biologically Inspired Computer Vision research group
http://www.bicv.org/deep-learning/
Learning Deep Learning
http://rt.dgyblog.com/ref/ref-learning-deep-learning.html
Summaries and notes on Deep Learning research papers
Deep Learning Glossary
- intro: “Simple, opinionated explanations of various things encountered in Deep Learning / AI / ML.”
- author: Ryan Dahl, author of NodeJS.
- github: https://github.com/ry/deep_learning_glossary
The Deep Learning Playbook
https://medium.com/@jiefeng/deep-learning-playbook-c5ebe34f8a1a#.eg9cdz5ak
Deep Learning Study: Study of HeXA@UNIST in Preparation for Submission
Deep Learning Books
awesome-very-deep-learning: A curated list of papers and code about very deep neural networks (50+ layers)
Deep Learning Resources and Tutorials using Keras and Lasagne
Deep Learning: Definition, Resources, Comparison with Machine Learning
Awesome - Most Cited Deep Learning Papers
The most cited papers in computer vision and deep learning
deep learning papers: A place to collect papers that are related to deep learning and computational biology
papers-I-read
- intro: “I am trying a new initiative - a-paper-a-week. This repository will hold all those papers and related summaries and notes.”
- github: https://github.com/shagunsodhani/papers-I-read
LEARNING DEEP LEARNING - MY TOP-FIVE LIST
Attention
- intro: Attention在视觉上的递归模型 / 基于Attention的图片生成 / 基于Attention的图片主题生成 / 基于Attention的字符识别
- blog: http://www.cosmosshadow.com/ml/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C/2016/03/08/Attention.html
Tools
DNNGraph - A deep neural network model generation DSL in Haskell
- homepage: http://ajtulloch.github.io/dnngraph/
Deep playground: an interactive visualization of neural networks, written in typescript using d3.js
- homepage: http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.23990&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification
- github: https://github.com/tensorflow/playground
Neural Network Package
- intro: This package provides an easy and modular way to build and train simple or complex neural networks using Torch
- github: https://github.com/torch/nn
deepdish: Deep learning and data science tools from the University of Chicago deepdish: Serving Up Chicago-Style Deep Learning
- homepage: http://deepdish.io/
- github: https://github.com/uchicago-cs/deepdish
AETROS CLI: Console application to manage deep neural network training in AETROS Trainer
- intro: Create, train and monitor deep neural networks using a model designer.
- homepage: http://aetros.com/
- github: https://github.com/aetros/aetros-cli
Books
Deep Learning
- author: Ian Goodfellow, Aaron Courville and Yoshua Bengio
- homepage: http://www.deeplearningbook.org/
- website: http://goodfeli.github.io/dlbook/
- notes(“Deep Learning for Beginners”): http://randomekek.github.io/deep/deeplearning.html
Fundamentals of Deep Learning: Designing Next-Generation Artificial Intelligence Algorithms
- author: Nikhil Buduma
- book review: http://www.opengardensblog.futuretext.com/archives/2015/08/book-review-fundamentals-of-deep-learning-designing-next-generation-artificial-intelligence-algorithms-by-nikhil-buduma.html
- github: https://github.com/darksigma/Fundamentals-of-Deep-Learning-Book
FIRST CONTACT WITH TENSORFLOW: Get started with with Deep Learning programming
- author: Jordi Torres
- book: http://www.jorditorres.org/first-contact-with-tensorflow/
Make Your Own Neural Network: IPython Neural Networks on a Raspberry Pi Zero
- book: http://makeyourownneuralnetwork.blogspot.jp/2016/03/ipython-neural-networks-on-raspberry-pi.html
- github: https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork
Blogs
Neural Networks and Deep Learning
http://neuralnetworksanddeeplearning.com
Deep Learning Reading List
http://deeplearning.net/reading-list/
WILDML: A BLOG ABOUT MACHINE LEARNING, DEEP LEARNING AND NLP.
Andrej Karpathy blog
Rodrigob’s github page
colah’s blog
What My Deep Model Doesn’t Know…
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
Christoph Feichtenhofer
- intro: PhD Student, Graz University of Technology
- homepage: http://feichtenhofer.github.io/
'Deep Learning' 카테고리의 다른 글
Keras Tutorials (0) | 2016.11.11 |
---|---|
matlab / python | feature fusion image retrieval / CNN features (5) - 모델 적용 test하는 거 있음 (0) | 2016.09.08 |
How to use the network trained using cnn_mnist example in MatConvNet? (0) | 2016.09.06 |
How to Start Learning Deep Learning (0) | 2016.08.24 |
Deep Learning Resources (0) | 2016.08.24 |