안녕하세요! 지난번에 이어 Detectron2에서 custom dataset을 활용하여 object detection 알고리즘을 학습시켜보는
Deep Learning/resources 2019. 12. 23. 10:06안녕하세요!
지난번에 이어 Detectron2에서 custom dataset을 활용하여 object detection 알고리즘을 학습시켜보는 간단한 튜토리얼을 공유합니다[1].
이번에도 AIHub에서 제공하는 보행자 데이터셋[2]을 이용하였습니다. Detectron2 프레임워크 자체가 인터페이스가 너무 잘 되어 있어서 custom dataset을 활용하기 정말 간편합니다.(Detectron2에서 제공하는 cDatasetCatalog에 데이터셋을 간편하게 등록하기만 하면 됩니다. 자세한 내용은 주피터 노트북 튜토리얼을 참고하세요!)
+ AIHub에 오늘 접속해보니 보행자 데이터셋이 추가 업데이트되었네요. bbox annotation가 추가되었고 (구체적인 통계는 아직 모르겠습니다), depth map과 instance segmentation을 위한 polygon annotation이 추가되었습니다. 데이터 퀄리티는 확인해 봐야 알겠지만 (bbox는 확실히 꼼꼼하고 좋았습니다), 시도해볼 것들이 많아졌군요!
다음 시간에는 detectron2를 활용해 다양한 모델을 커스터마이징 하는 방법을 공유하도록 하겠습니다.
오늘도 즐거운 하루 보내세요!
REFERENCES
[1] http://bit.ly/2EGDgQm
[2] http://aihub.or.kr/aidata/136