Visual Odometry 방법 중 direct method를 사용한 Direct Sparse Odometry(DSO) 논문의 내용 일부분을
SLAM/resources 2020. 1. 6. 12:36Visual Odometry 방법 중 direct method를 사용한 Direct Sparse Odometry(DSO) 논문의 내용 일부분을 정리한 pdf 파일입니다.
대부분의 내용은 https://blog.csdn.net/xxxlinttp/article/details/89379785 블로그를 보면서 참조했습니다. (저처럼 중국어를 모르시는 분들은 중/영 번역을 하신 다음 보시면 될 것 같습니다.)
direct method는 pose tracking을 수행하기 위해 거의 전적으로 최적화에 의존하고 있어서 대부분의 내용이 최적화와 관련된 내용인 것 같네요. 추가적으로 DSO 논문에서는 photometric calibration parameter (a,b)와 inverse depth까지 추가되어서 조금 더 복잡한 식이 유도되는 것 같습니다
아직 정확히 모르는 개념들이 많아서 (SSE2 프로그래밍, Photometric Calibration, ...) 정리되는대로 업데이트하려고 합니다
논문 링크: http://vladlen.info/papers/DSO.pdf
코드 링크: https://github.com/JakobEngel/dso
논문과 코드를 보실 때 같이 참조해서 봐주시면 어느정도 도움이 될 수 있을 것 같습니다
개인적으로 공부하기 위해 작성한 자료여서 틀린 부분도 존재할 것 같네요. 혹시 틀린 부분이 있다면 말씀해주시면 감사하겠습니다