Computer Vision Specialization | Coursera.
Learn how computers visually process the world. Dive into artificial intelligence’s fastest-growing field
There are 4 Courses in this Specialization:
COURSE 1) Computer Vision Basics.
COURSE 2) Image Processing, Features & Segmentation.
COURSE 3) Stereo Vision, Dense Motion & Tracking.
COURSE 4) Visual Recognition & Understanding.
http://bit.ly/31Xgm15
https://www.facebook.com/groups/computervisionandimageprocessing/permalink/2561374053932234/?sfnsn=mo
Posted by uniqueone
,

https://www.youtube.com/user/HoffWilliam/playlists

https://www.youtube.com/playlist?list=PLyED3W677ALNv8Htn0f9Xh-AHe1aZPftv

에 동영상 목록 있다.

 

http://inside.mines.edu/~whoff/courses/EENG512/lectures/

여기가 수업 홈피

Semester: Spring 2016

Week Date Due Topics Book Before Class In Class Additional Material
1 1/13   Introduction Ch 1   Course Intro (slides)
01-Intro to Computer Vision (slides)
Intro to Matlab (slides)
Lab 01
Review of linear alg (slides)
Matlab tutorial (pdf)
2 1/18 HW0 Image Formation Ch 2 Matlab image proc toolbox (slides, video 1)
02-Image formation (slides, videos 1, 2, 3, 4)
Quiz 1
Examples (
slides)
Lab 02
02a-Other sensors (slides)
  1/20   Coordinate Transformations     03-2D-2D Transformations (slides, videos 1, 2)
04-3D-3D Transformations (slides, videos 1, 2, 3, 4)
showRotations.m, showRotations2.m
Examples (slides)
04a-More on 3D rotations (slides)
3 1/25       05-3D-2D Transformations (slides, videos 1, 2, 3, 4) Quiz 2
05a-More on 3D-2D (slides)
Lab 03
05b-Other examples (slides)
  1/27   Image Filtering Ch 3   06-Image filtering (slides, videos 1, 2, 3, 4)
Image: Fig0309(a).tif, examples (slides)
 
4 2/1 HW1     07-Binary images (slides, videos 1, 2, 3)
Images: Fig9.16(a).jpg, robot.jpg
Videos: oneCCC.wmv, fiveCCC.wmv
Quiz 3
07-Examples (slides)
Lab 04
Reading & writing movies in Matlab (slides)
Lecture from EENG 510 (slides)
  2/3   Linear Least Squares 9.1, A.2   08-2D image transforms (slides, videos 1, 2)
Images: book_A, book_B, wall1.jpg, wall2.jpg
08-Examples (slides)
Images: pavilionLeft, pavilionCenter, pavilionRight
5 2/8   Alignment 6.1-6.2 15-Feature-based alignment (slides, video 1, 2, 3)
16-Pose estimation (slides, video 1)
Images img1_rect, img2_rect, img3_rect
Quiz 4
16-Examples (slides)
Lab 05
Images robot1.jpg, robot2.jpg, robot3.jpg
 
  2/10   Edge detection, OpenCV 4.2   09-Edge detection (slides, videos 1, 2)
Image: house.jpg
32-OpenCV
First program in Visual C++ (slides)
OpenCV in Visual C++ (slides, tutorial)
32-Examples (slides)
Video: testvideo.wmv
6 2/15 HW2 President's Day - no class        
  2/17         19-Pose estimation using OpenCV (slides)
Image: robotTarget.jpg
Lab 06
 
7 2/22       Read: ARTag.pdf by M. Fiala Quiz 5
33-ARTags (slides)
Lab 07
Code: main.cpp, findSquare.cpp,
readBitMatrix.cpp, ARTag.h, ARTag.cpp
 
  2/24   SIFT 4.1.2   12-SIFT (slides, video 1)
Vlfeat (slides), images: graffiti.zip,
test000.jpg, test012.jpg
 
8 2/29 HW3     Read “Distinctive Image Features from Scale-Invariant Keypoints" by D. Lowe
14-SIFT-based object recognition (slides, video 1, 2)
Images: testSIFTimages.zip
Quiz 6
14-Examples (slides)
Lab 08
 
  3/2   RANSAC 6.1.4   20-RANSAC (slides)
Images: floor1.jpg, floor2.jpg, table1.jpg, table2.jpg
 
9 3/7     4.1 10-Image Patches (slides)
Images: building.avi
11-Corners (slides, video 1, 2, 3)
Quiz 7
11-Examples (slides)
Lab 09
 
  3/9   Hough Transform 4.3   Final Project Information
13-Hough transform (slides, video 1, 2, 3)
13-Examples (slides)
Image: hallway.jpg, Grenouilles.jpg
Videos: sphero1.wmv, sphero3.wmv, sphero4.wmv
  3/14   Spring break - no class        
  3/16   Spring break - no class        
10 3/21 HW4   2.1, 6.3.2   34-Finding a checkerboard (slides)
Video: board.mp4
Lab 10
findCheckerBoard.m
 
  3/23   Snow day - no class        
11 3/28 Project proposal   6.1.4   20a-Finding a planar object using OpenCV (slides)
Example video
Code and data: planarCodeData.zip
Complete main program
  3/30   Stereo Vision Ch 11   28-Stereo (slides, video pt1, pt2, pt3)
Program: stereo_ball.m
Images: left.png, right.png
Exercise
Code: stereo_BasicBlockMatch.m, stereo_BlockMatchDynamicProg.m
12 4/4 HW5   A.1.1
6.2.1
  Upcoming courses
17-SVD (slides, video 1, 2)
18-Linear pose estimation (slides, video 1, 2, 3)
18-Examples (slides)
  4/6   Calibration 6.3   23-Camera calibration (slides) 23-Examples (slides)
calibrationImages.zip
13 4/11     4.1.4, 8.1.3 Read "An Iterative Image Registration Technique with an Application to Stereo Vision" by Lucas and Kanade Quiz
20b-Tracking a planar object using OpenCV (slides)
Lab 11
Code: 20b-ProgramFiles.zip
  4/13   Structure from Motion 7.2   24-Epipolar and Essential matrix (slides, video pt1, pt2)
25-Structure from motion (slides, video pt1, pt2)
Programs: createpts.m, essential.m, drawepipolar.m, twoview.m
24-Examples (slides)
Images: cube1.jpg, cube2.jpg
25-Examples (slides)
Program: doCube.m
14 4/18 Progress report   7.4 26-Fundamental matrix (slides, video pt1) Quiz
Program: syntheticExample.zip
Lab 12
Code: dofundamental.zip
Images: pavillionCorner1.jpg, pavillionCorner2.jpg
  4/20         27-Bundle adjust (slides, video pt1)
29-Uncertainty (slides, video pt1, pt2)
Program: pose.m
29-Examples (slides)
15 4/25 HW6       Guest speaker: Dr. Josh Gordon from National Institute of Standards and Technology  
  4/27         Individual project meetings  
16 5/2 Presentations       Presentation Schedule  
  5/4 Presentations       Presentation Schedule  

 

 

 

 

 

 

Posted by uniqueone
,

https://cvfxbook.com/about/

https://www.ecse.rpi.edu/~rjradke/cvfxcourse.html

 

 


Computer Vision for Visual Effects by Rich Radke is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Based on a work at http://www.ecse.rpi.edu/~rjradke/cvfxcourse.html.
Permissions beyond the scope of this license may be available at this contact page.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Posted by uniqueone
,